In banning plastic bags we need to make sure we’re not creating new problems

Image of a bin full of plastic garbage bags What will we do for 
bin liners now? AAP Image/James Ross

The recent decision by Australia’s big two supermarkets to phase out free single-use plastic bags within a year is just the latest development in a debate that has been rumbling for decades.

State governments in Queensland and New South Wales have canvassed the idea, which has been implemented right across the retail sector in South Australia and the Australian Capital Territory.

So far, so good. But are there any downsides? Many of you, for instance, face the prospect of paying for bin liners for the first time ever. And while that might sound tongue-in-cheek, it shows the importance of considering the full life-cycle of the plastics we use.

Pros and cons

On a direct level, banning single-use plastic bags will avoid the resource use and negative environmental impacts associated with their manufacture. It will reduce or even eliminate a major contaminant of kerbside recycling. When the ACT banned these bags in 2011 there was a reported 36% decrease in the number of bags reaching landfill.

However, the ACT government also noted an increase in sales of plastic bags designed specifically for waste. These are typically similar in size to single-use shopping bags but heavier and therefore contain more plastic.

Ireland’s tax on plastic shopping bags, implemented in 2002, also resulted in a significant increase in sales of heavier plastic waste bags. These bags are often dyed various colours, which represents another resource and potential environmental contaminant.

Keep Australia Beautiful, in its 2015-16 National Litter Index, reported a 6.2% reduction in the littering of plastic bags relative to the previous year, while also noting that these represent only 1% of litter.

Meanwhile, alternatives such as paper or canvas bags have environmental impacts of their own. According to a UK Environmental Agency report, a paper bag would need to be re-used at least four times, and cotton bags at least 173 times, to have a lower environmental impact than single-use plastic bags in terms of resource use, energy and greenhouse outcomes.

This illustrates the importance of considering the full life cycle of shopping bags to arrive at an evidence-based decision rather than one based on emotion or incomplete data. I am not suggesting this is the case with plastic shopping bags; I’m just pointing out the value of proper analysis.

Simply banning a certain type of bag, while this may be a good idea in itself, could result in other knock-on impacts that are harder to manage. Replacing shopping bags with heavier, more resource-intensive ones may solve some environmental impacts but exacerbate others.

Plastics, not plastic bags

In a 2016 discussion paper, Western Australia’s Association of Local Governments suggested the focus of action should be plastics in general, not just shopping bags.

As the Keep Australia Beautiful data show, plastic bags are just a small part of a much bigger problem. Many other plastic items are entering the litter stream too.

With this in mind, it pays to ask exactly why we are banning plastic shopping bags. Is it the litter issue, the potential impact on wildlife, the resource consumption, all of the above, or something else? Is it because they are plastic, because they are disposable, or because it saves supermarkets money?

The answers to these questions can guide the development of an effective strategy to reduce the environmental (and perhaps economic) burden of taking our shopping home. With that in place, we can then develop an education strategy to help shoppers adapt and make the scheme a success. But this costs money.

The triple bottom line

There should be plenty of money available. The Victorian state government’s Sustainability Fund, for instance, has A$419 million to spend over the next five years on researching alternatives to shopping and household waste management. Developing a shopping bag strategy would consume only a small part of this and would be money well spent.

The concept of the “triple bottom line” – ensuring that decisions are based equally on environmental, social and economic considerations – needs to be applied to decisions about whether to ban single-use plastic bags, and what alternatives will result. The problem with simply announcing a ban is that this leaves it up to shoppers themselves to work out what to do to replace them.

Evidence-based policy is crucial. We first need to find out how many people already use re-usable bags, whether they always take them to the shops, and what items they put in them. Do people generally know how many times each type of bag should be re-used in order to be an environmentally better choice than the current plastic bags? What’s the best material for re-usable bags, taking into account not only their environmental credentials but also their ability to get your shopping home without breaking?

When it comes to environmental impacts, it’s important not to simply exchange one problem for another. If all we’re doing is swapping between different types of plastic, it’s hard to see how we’re solving anything.

This article was written by:
Image of Trevor ThorntonTrevor Thornton – [Lecturer, School of Life and Environmental Sciences, Deakin University]

 

 

 

 

 

This article is part of a syndicated news program via

 

The Great Barrier Reef isn’t listed as ‘in danger’ – but it’s still in big trouble

 

Image of the coral on the Great Barrier ReefThe Great Barrier Reef is reeling 
under a combination of bleaching, over-fishing and land clearing. 

In a somewhat surprising decision, UNESCO ruled this week that the Great Barrier Reef – one of the Earth’s great natural wonders – should not be listed as “World Heritage in Danger”.

The World Heritage Committee praised the Reef 2050 Long-Term Sustainability Plan, and the federal minister for the environment, Josh Frydenberg, has called the outcome “a big win for Australia and a big win for the Turnbull government”.

But that doesn’t mean the Reef is out of danger. Afforded World Heritage recognition in 1981, the Reef has been on the warning list for nearly three years. It’s not entirely evident why UNESCO decided not to list the Reef as “in danger” at this year’s meeting, given the many ongoing threats to its health.

However, the World Heritage Committee has made it clear they remain concerned about the future of this remarkable world heritage site.

The reef is still in deep trouble

UNESCO’s draft decision (the adopted version is not yet releasesd) cites significant and ongoing threats to the Reef, and emphasises that much more work is needed to get the health of the Reef back on track. Australia must provide a progress report on the Reef in two years’ time – and they want to see our efforts to protect the reef accelerate.

Right now, unprecedented coral bleaching in consecutive years has damaged two-thirds of Australia’s Great Barrier Reef. This bleaching, or loss of algae, affects a 1,500km stretch of the reef. The latest damage is concentrated in the middle section, whereas last year’s bleaching hit mainly the north.

Pollution, overfishing and sedimentation are exacerbating the damage. Land clearing in Queensland has accelerated rapidly in the past few years, with about 1 million hectares of native vegetation being cleared in the past five years. That’s an area the size of the Brisbane Cricket Ground being cleared every three minutes.

About 40% of this vegetation clearing is in catchments that drain to the Great Barrier Reef. Land clearing contributes to gully and streambank erosion. This erosion means that soil (and whatever chemical residues are in it) washes into waterways and flows into reef lagoon, reducing water quality and affecting the health of corals and seagrass.

Landclearing also directly contributes to climate change, which is the single biggest threat to the Reef. The recent surge in land clearing in Queensland alone poses a threat to Australia’s ability to meet its 2030 emissions reduction target. Yet attempts by the Queensland Government to control excessive land clearing have failed – a concern highlighted by UNESCO in the draft decision.

Picture of gully ersosion
Land clearing can lead to serious hillslope gully and sheet erosion, which causes sedimentation and reduced water quality in the Great Barrier Reef lagoon. Willem van Aken/CSIRO

A time for action, not celebration

The Reef remains on UNESCO’s watch list. Just last month the World Heritage Committee released a report concluding that progress towards achieving water quality targets had been slow, and that it does not expect the immediate water quality targets to be met.

The draft decision still expressed UNESCO’s “serious concern” and “strongly encouraged” Australia to “accelerate efforts to ensure meeting the intermediate and long-term targets of the plan, which are essential to the overall resilience of the property, in particular regarding water quality”.

This means reducing run-off of sediment, nutrients and pollutants from our towns and farmlands. Improving water quality can help recovery of corals, even if it doesn’t prevent mortality during extreme heatwaves.

The Great Barrier Reef is the most biodiverse of all the World Heritage sites, and of “enormous scientific and intrinsic importance” according to the United Nations. A recent report by Deloitte put its value at A$56bn. It contributes an estimated A$6.4bn annually to Australia’s economy and supports 64,000 jobs.

Excessive landclearing in Queensland, which looks like being a core issue in the next state election, has been successfully curbed in the past, and it could be again.

But the reef cannot exist in the long term without international efforts to curb global warming. To address climate change and reduce emissions, we need to act both nationally and globally. Local action on water quality (the focus of the Reef 2050 Plan) does not prevent bleaching, or “buy time” to delay action on emissions.

We need adequate funding for achieving the Reef 2050 Plan targets for improved water quality, and a plan to reach zero net carbon emissions. Without that action, an “in danger” listing seems inevitable in 2020. But regardless of lists and labels, the evidence is clear. The Great Barrier Reef is dying before our eyes. Unless we do more, and fast, we risk losing it forever.

This article was co-authored by:
Image of James WatsonJames Watson – [ Associate Professor, The University of Queensland]
and
Image of Martine MaronMartine Maron – [ARC Future Fellow and Associate Professor of Environmental Management, The University of Queensland]

 

 

 

 

 

This article is part of a syndicated news program via

 

How an obscure Austrian philosopher saw through our empty rhetoric about ‘sustainability’

Image of Gunther Anders Unravelling the climate policy paralysis  
-Gunther Anders, Austrian journalist, philosopher, who developed a 
philosophical anthropology for the age of technology
 “Sustainability” is, ironically, a growth area.  Ever since the term “sustainable development” burst onto the scene in 1987 with the release of Our Common Future (also known as the Brundtland report), there has been a dizzying increase in rhetoric about humanity’s relationship with our planet’s resources. Glossy reports – often featuring blonde children in front of solar panels or wind turbines – abound, and are slapped down on desks as proof of responsibility and stewardship.

Every few years a new term is thrown into the mix – usually preceded by adjectives like “participatory” or “community-led”. The fashionability of “resilience” as a mot du jour seems to have peaked, while more recently the “circular economy” has become the trendy term to put on grant applications, conference notices and journal special editions. Over time journals are established, careers are built, and library shelves groan.

Meanwhile, the planetary “overshoot”, to borrow the title of a terrifying 1980 book, goes on – exemplified by rising concentrations of atmospheric carbon dioxidewarmer oceansArctic melting, and other signs of the times.

With all this ink being spilled (or, more sustainably, electrons being pressed into service), is there anything new to say about sustainability? My colleagues and I think so.

Three of us (lead author Ulrike Ehgartner, second author Patrick Gould and myself) recently published an article called “On the obsolescence of human beings in sustainable development”.

In it we explore the big questions of sustainability, drawing on some of the work of an unjustly obscure Austrian political philosopher called Gunther Anders.

Who was Günther Anders?

He was born Günther Siegmund Stern in 1902. While he was working as a journalist in Berlin, an editor wanted to reduce the number of Jewish-sounding bylines. Stern plumped for “Anders” (meaning “other” or “different”) and used that nom de plume for the rest of his life.

Anders knew lots of the big philosophical names of the day. He studied under Edmund Husserl and Martin Heidegger. He was briefly married to Hannah Arendt, and Walter Benjamin was a cousin.

But despite his stellar list of friends and family, Anders himself was not well known. Harold Marcuse points out that the name “Stern” was pretty apt, writing:

His unsparingly critical pessimism may explain why his pathbreaking works have seldom sparked sustained public discussion.

While Hiroshima and the nuclear threat were the most obvious influences on Anders’ writing, he was also crucially influenced by the events at Auschwitz, the Vietnam War, and his periods in exile in France and the United States. But why should we care, and how can his ideas be applied to modern-day ideas about sustainability?

Space precludes a blow-by-blow account of what my colleagues and I wrote, but two ideas are worth exploring: the “Promethean gap” and “apocalyptic blindness”.

Anders suggested that the societal changes wrought by the industrial age – chief among them the division of labour – opened a gap between individuals’ capability to produce machines, and their capability to imagine and deal with the consequences.

So, riffing on the Greek myth of Prometheus (the chap who stole fire from Mount Olympus and gave it to humans), Anders proposed the existence of a “Promethean gap” which manifests in academic and scientific thinking and leads to the extensive trivialisation of societal issues.

The second idea is that of “apocalyptic blindness” – which is, according to Anders, the mindset of humans in the Age of the Third Industrial Revolution. This, as we write in our paper:

…determines a notion of time and future that renders human beings incapable of facing the possibility of a bad end to their history. The belief in progress, persistently ingrained since the Industrial Revolution, causes the incapability of humans to understand that their existence is threatened, and that this could lead to the end of their history.

Put simply, we don’t want to look an apocalypse in the eye, even if it’s heading straight towards us.

The climate connection

“So what?” you might ask. Why listen to yet another obscure philosopher railing about technology, in the vein of Lewis Mumford and Jacques Ellul? But I think a passing knowledge of Anders and his work reminds us of several important things.

This is nothing new. Recently, the very notion of ‘progress’ has come under renewed assault, with books questioning our assumptions about it. This is not new of course – in a 1967 short story collection about life at the United Nations, Shirley Hazzard had written:

About this development process there appeared to be no half-measures: once a country had admitted its backwardness, it could hope for no quarter in the matter of improvement. It could not accept a box of pills without accepting, in principle, an atomic reactor. Progress was a draught that must be drained to the last bitter drop.

The time – if ever there was one – for tinkering around the edges is over. We need to take stronger action than simply pursuing our feelgood preoccupation with sustainability.

This begs the question of who is supposed to shift us from the current course (or rather, multiple collision courses. That’s a difficult one to answer.

The hope that techno-fixes (including 100% renewable energy) will sort out our problems is a dangerous delusion (please note, I’m not against 100% renewables – I’m just saying that green energy is “necessary but not sufficient” for repairing the planet).

Similarly, the “circular economy” has a rather circular feeling to it – in the sense that we’ve seen all this before. It seems (to me anyway) to be the last gasp of the “ecological modernist” belief that with a bit more efficiency, everything can simply keep on progressing.

Our problems go far deeper. We are going to need a rapid and fundamental shift in our values, habits, behaviours, and outlooks. Put in Anders’ terms, we need to stop being blind to the possibility of apocalypse. But then again, people have been saying that for a century or more.

This article was written by:
Image of Marc Hudson
Marc Hudson – [ PhD Candidate, Sustainable Consumption Institute, University of Manchester]

 

 

 

 

 

This article is part of a syndicated news program via

 

Land clearing isn’t just about trees – it’s an animal welfare issue too

land clearing has issues for animalsThis quenda seems to have been a victim 
of land clearing. Colin Leonhardt/ Birdseyeviewphotography.com.au

Tens of millions of wild animals are killed each year by land clearing across Australia, according to our research on the harm done to animals when native vegetation is removed for agricultural, urban and industrial development.

As my colleague Nahiid Stephens and I point out in our study, this harm to animals is largely invisible, unlike the obvious effects of clearing on trees and other plants. But just because something is invisible, that does not mean it should be ignored.

We argue that reforms are necessary to ensure that decision-makers take wild animals’ welfare into account when assessing development proposals and land clearing applications.

How does land clearing harm animals?

Land clearing harms animals in two basic ways. First, they may be killed or injured when native vegetation is removed, typically through the use of earth-moving machinery. For example, animals may suffer traumatic injuries or be smothered when vegetation is cut or soil and debris are shifted.

Second, the removal of native vegetation puts animals in harm’s way. Those that survive the clearing process will be left in an environment that is typically hostile, unfamiliar or unsuitable. Animals are likely to find themselves in landscapes that are devoid of food and shelter but filled with predators, disease, and increased aggression from members of their own species as they struggle to make a living.

Land clearing causes animals to die in ways that are physically painful and psychologically distressing. Animals will also suffer physical injuries and other pathological conditions that may persist for days or months as they try to survive in cleared areas or other environments to which they are displaced.

Many reptiles and mammals are territorial or have small home ranges, and thus have strong associations with small areas of habitat. Koalas in urban areas, for example, tend to rely on particular food trees. Likewise, lizards and snakes often rely on particular microhabitat features such as logs, rocks, and leaf litter to provide the combination of temperature and humidity that they need to survive.

Laws are not protecting animals

Land clearing remains a fundamental pressure on the Australian environment. While the regulatory frameworks for land clearing vary greatly across the Australian states and territories, the principal statutes that govern native vegetation clearance in most jurisdictions typically contain some sort of express recognition of the harm that land clearing causes, such as the loss or fragmentation of habitat, land degradation, and salinity.

Image of cleared bushland
Habitat lost: land cleared for the now-discontinued Perth Freight Link road project. Colin Leonhardt/Birdseyeviewphotography.com.au, Author provided

Yet these regulations are uniformly silent on the issue of how land clearing harms animals. No state or territory has developed a clear framework to evaluate this harm, let alone minimise it in future development proposals.

This failure to recognise animal welfare as a significant issue for decision-making about land clearing is troubling, especially given the scale of current land clearing. In Queensland, for example, an estimated 296,000 hectares of woody vegetation was cleared in 2014-15, nearly all of which was for the purpose of converting native vegetation to pasture. In our study we estimate that, on the basis of previous studies and current estimates of clearing rates, land clearing in Queensland and New South Wales combined kills more than 50 million birds, mammals and reptiles each year.

What reforms are necessary?

We suggest that two basic reforms are required. First, state and territory parliaments should amend the laws that govern environmental impact assessments and native vegetation clearance, to require decision-makers to take animal welfare into account when assessing land clearing applications.

Second, we urgently need accurate ways to evaluate the harm that proposed clearing actions may cause to individual animals. Animal welfare is broadly recognised as an important social concern, so it makes sense that in a situation where we know animals are being harmed, we should take steps to measure and prevent that harm.

The basic aim of any reform should be to ensure that the harm that land clearing causes to individual wild animals is appropriately considered in all forms of environmental decision-making and that such evaluations are based on clear and objective criteria for animal welfare.

At a minimum, those who apply to clear native vegetation should be required to provide an estimate of the number and type of native animals that will be killed by the proposed land clearing. This would ensure that all parties – applicants, decision-makers, and the community – understand the harm that the clearing would cause. These estimates could be made by using population density information for species that are likely to be affected – an approach that has been already been used.

We also need to revise our perceptions about the usefulness and necessity of land clearing in Australia. A better idea of what is “acceptable” would include not only the environmental costs of clearing an area of native vegetation, but also the individual suffering that animals will experience.

Issues of causation and responsibility are critical here. While it’s unlikely that someone who wants to clear land actually wants native animals to suffer, such suffering will nevertheless be an inevitable consequence. The relevant question is not whether animals will be killed and harmed when land is cleared, but how much of that harm will occur, how severe it will be, and whether it ought to be avoided.

If such harm is deemed necessary – based on an accepted system for weighing the potential benefits and harms – the next question is how the harm to animals can be minimised by, for example, keeping the amount of vegetation to be cleared to a minimum.

This article was written by:
Image of Hugh Finn
Hugh Finn – [Lecturer, Curtin University]

 

 

 

 

 

This article is part of a syndicated news program via
 
 
 

We need more than just extra water to save the Murray-Darling Basin

We-need-more-than-just-extra-water-to-save-the-Murray-Darling-Basin The Murray-Darling Basin is an 
incredibly complex ecological system. Mike Russell

After a long and contentious public debate, in 2012 Australia embarked on a significant and expensive water recovery program to restore the Murray-Darling Basin’s ecosystems.

Despite general agreement that a certain amount of water should be reserved to restore the flagging river system, the argument continues as to whether this should be 2,750 or 3,200 gigalitres (GL) a year, and how these savings can be achieved.

recent report by the Wentworth Group of Concerned Scientists argues that there is no conclusive evidence, after five years, that the plan is effective. The report’s authors believe that an extra 450GL of water a year needs to be recovered to save the basin.

There is no doubt in our minds that the Murray-Darling river system is in crisis, and the Basin Plan was vitally needed. But while we broadly agree with the Wentworth Group’s report, it’s a mistake to focus on water volume alone.

Without giving equal attention to improving water quality and building critical ecological infrastructure, it’s possible that increasing river flows could actually harm the Basin.

Map of south-east Australia highlighting the Murray-Darling basin and major rivers that flow through it
Map of south-east Australia highlighting the Murray-Darling basin and major rivers that flow through it. Murray-Darling Basin Authority/Reuters

What are we trying to recover?

We don’t really have much information on the state of the basin before industrial development. Most knowledge is more recent, but we do know that from about the 1920s onwards, considerable volumes of water have been removed. Few comprehensive historic records of flora and fauna, let alone water quality, are available.

While knowledge of the state and significance of the ecology of the river systems is scant, there is ample evidence that increased levels of nutrients, salts and, in particular, sediments have adversely affected the wetlands, main channels and associated floodplains.

The records of fish that historically lived in the rivers, billabongs and wetlands also tell a cautionary tale. These wetlands and rivers once teemed with native fish. In 1915, a single scoop of a 10 m seine net would yield more than 100,000 native fish in a single wetland.

There were dozens of species at each site, supporting a burgeoning fishery that was considered inexhaustible.

Image of  extreme overfishing of Murray cod in the late 1800s
An example of extreme overfishing of Murray cod in the late 1800s, which caused the first strong declines in the species. Such catches were typical for the period. https://en.wikipedia.org/wiki/Murray_cod

Since that time the basin has been extensively developed. The fishing industry expanded, forests were cleared, dams were built, floodplains were blocked by levies, water began to be diverted for irrigation, the demand for drinking water increased and invasive species were introduced. But somewhere over the past 100 years we crossed a threshold where the system stopped being able to support native fish.

Nowadays, visiting the wetlands that were historically packed with native fish (all of which had huge cultural importance to traditional owners), we find mostly invasive species such as carp, goldfish and weatherloach.

In some places, native species that were once abundant have not been seen in 40 years. The formerly productive commercial fisheries, and the livelihoods they supported, have been shut down.

Our native fish are in trouble, and unless urgent action is taken, many face extinction within decades.

Image of A native Murray Darling cod
A native Murray Darling cod. Native fish levels have plummeted, and some native species now face extinction. AAP Image/Dean Lewins

Rebuilding a complex system

The Basin Plan is underpinned by a focus on river volume as the cause of system degradation and subsequent recovery. But the system is much more complex than that. Fluctuating levels of sediments, salts and nutrients drive significant changes, and so regulating river flows – which carry these components from place to place – fundamentally alters the dynamics of main channels and floodplain wetlands.

Over the last century, erosion has filled the rivers in the Murray system with mud. When this water flows into the wetlands, this sediment builds and blocks the light, killing the aquatic plants that support native fish.

Simply increasing the water flow without addressing water quality runs the risk of exacerbating this problem. We therefore argue the first step in river recovery is attending to water quality.

The Murray-Darling Basin Plan has focused very heavily on the amount of water in the system; partly because speaking in terms of volume is easiest to demonstrate and understand. But the paleoecological record reveals that water quality, at least in wetlands, declined well before human use of water changed the river flows.

So if recovering water volume is a critical target, it is equally important that this water is of good quality. Recent experience with blackwater events, in which oxygen levels drop so low that fish suffocate, highlights this need. Even water of the wrong temperature, known as “thermal pollution”, can cause real harm. Winter-temperature water, for example, can prevent fish from breeding if it occurs in summer. Bad water quality will simply not provide good ecological outcomes.

A century of engineering development has fundamentally changed the basins rivers in a way that does not support native fish or the original ecology in general. Even if the recovered water is of high quality, we will need to take other steps to achieve tangible outcomes. Thus we need “complementary measures”, which augment the benefits of increasing river volumes. These include:

  • Mitigating thermal and other pollution to ensure the water temperature and overall quality is adequate,
  • Building fishways so that fish can navigate dams and weirs,
  • Restocking threatened fish species into areas they are no longer found,
  • Controlling carp and other non-native species that now dominate our waterways;
  • Building fish-friendly irrigation infrastructure such as screens on irrigation pumps or overshot weirs; and
  • Improving habitat through resnagging or controlling harmful practices on flood plains.

Another measure to improve the basin’s waterways, the proposal to release a virulent strain of carp herpes, has raised debate over whether it will neatly solve a major environmental and economic problem or create further issues.

If implemented correctly, these complementary measures are just as important as water recovery and improving water quality for meeting the basin plan’s ecological targets.

Repairing a river system such as the Murray-Darling is incredibly complex, and we must broaden our view beyond simply thinking about water volumes. Some of these extra steps can also provide benefits with less cost to the people who live and work with the water. To achieve this we suggest a staged program of recovery that allows the communities who live in the basin more time to adapt to the plan.

This article was co-authored by:
Image of Max FinlaysonMax Finlayson – [Director, Institute for Land, Water and Society, Charles Sturt University];
Image of Lee Baumgartner Lee Baumgartner – [Associate Research Professor (Fisheries and River Management), Institute for Land, Water, and Society, Charles Sturt University] and
Peter Gell – [Professor of Environmental Management, Federation University Australia]

 

 

 

 

 

This article is part of a syndicated news program via

 

Common pesticides can harm bees, but the jury is still out on a global ban

 

Common-pesticides-can-harm-bees,-but-the-jury-is-still-out-on-a-global-banTwo papers published yesterday report that 
neonicotinoids have negative effects on honey bees and wild bees 
in realistic field experiments

Some of the world’s most widely used pesticides can be harmful to bees, according to the first large-scale studies aimed at measuring the impact of compounds called neonicotinoids on bees’ health. But the effects vary widely between different compounds and different countries, suggesting that more regional research will be needed to clarify the exact scale of the problem.

Neonicotinoids, which are typically coated onto seeds before planting rather than being sprayed onto crop plants, were developed with the aim of harming only those animals that eat the plants. But they are also found in the pollen and nectar of treated plants, potentially affecting beneficial organisms like bees.

Two papers published today in the journal Science report that neonicotinoids have negative effects on honey bees and wild bees in realistic field experiments. But the results are mixed and far from conclusive.

The concern about neonicotinoids prompted the European Union to impose a temporary moratorium in 2013 on the use of three key pesticides. In contrast, New Zealand’s government has joined with Australia in not imposing a ban. I think our governments have made exactly the right decision at this time.

Study confirms negative effects

One of the studies, led by Nadejda Tsvetkov at York University, Canada, indicates that chronic exposure to neonicotinoids reduces honey bees’ health near Canadian corn fields.

This is consistent with many previous research findings showing that feeding on large amounts of neonicotinoids can be fatal to honey bee workers and queens.

For bees given a smaller dose, their foraging becomes less efficient. They undertake reduced hygienic behaviour in the hive and their immune system seems to be impaired. And their tolerance of other stressors bees experience in their environment, in this case a fungicide, is reduced.

The new Canadian study shows that field-realistic exposure to neonicotinoids can substantially reduce honey bees’ health.

Other results mixed

The other study, led by Ben Woodcock of Britain’s Natural Environment Research Council, describes research done on three different bee species in three different countries. It also attempted to use field-realistic exposure to neonicotinoids. Populations of honey bees, bumble bees and a solitary bee were followed in the United Kingdom, Hungary and Germany.

The team examined two neonicotinoid pesticides, and found a fascinatingly mixed bag of results. Both pesticides resulted in significantly reduced numbers of honey bee eggs being produced in Hungary. But exposure to both pesticides in Germany resulted in significantly more eggs being produced. Neonicotinoids also seemed to result in higher numbers of workers surviving winter in Germany.

In Hungary, fewer worker bees survived winter after exposure to one pesticide, but not the other. Similarly, in the United Kingdom, there were mostly negative but some positive effects of exposure to the different neonicotinoid pesticides.

The take-home message is that different neonicotinoids can have different effects, which can be very specific to the country of use. After reading these results, if I were a grower in Germany, I might start to question the European Union’s temporary moratorium.

Country-specific data needed

These studies highlight the need for data to allow countries like New Zealand and Australia to effectively manage the use of neonicotinoid pesticides. We need to know the effects of neonicotinoids in our specific environmental conditions and in the way we use them.

We also need to know what the effects would be if we took this group of pesticides away. I’ve read reports that growers in the UK have had to revert to broad-spectrum pesticides that are considered worse for the environment and mean they cannot grow certain crops.

In 2013, the Australian government undertook a review of neonicotinoids and the health of honey bees. This concluded that “the introduction of the neonicotinoids has led to an overall reduction in the risks to the agricultural environment from the application of insecticides”.

The review found little scientific evidence to show that the current use of neonicotinoids in Australia causes widespread harm to honey bees. The review stated that “the introduction of the neonicotinoid insecticides has brought a number of benefits, including that they are considerably less toxic to humans (and other mammals) than the organophosphorus and carbamate insecticides they have significantly replaced”.

Bees are up against it

Honey bees in New Zealand have a plethora of known and scientifically demonstrated threats. These include invasive blood-sucking mites, and the deformed wing virus, which has been described as a key contributor to the collapse of bee colonies around the world.

New Zealand’s bees have bacterial pathogens like American foulbrood that results in beekeepers having to burn their bees and hives. Fungal diseases are widespread. We also have management issues with the higher-than-ever numbers of managed hives, which are often managed poorly and often overstocked. These are real and known issues affecting our honey bees now. We have data on these problems that can guide their management.

The new research will doubtless lead to calls from some quarters for Australia and New Zealand to ban neonicotinoid pesticides. I hope that the New Zealand and Australian governments act on studies like those published today, but I would be disappointed if that action was anything other than evidence- and science-based. Let’s gather the data specifically for each country, and then make a decision on whether and how to use these pesticides.

This article was written by:
Image of Phil Lester Phil Lester – [Professor of Ecology and Entomology, Victoria University of Wellington]

 

 

 

 

 

This article is part of a syndicated news program via

 

What do we tell kids about the climate change future we created for them?

Climate-Change_what-do-we-tell-our-kidsUnravelling the climate policy paralysis. 
Image courtesy of NASA -Detailed Global Climate Change Projections

Over the past two years I have published my analyses on a range of topics related to climate change and politics, including climate denial in the Liberal Party, 25-year-old cabinet papers (not once but twice), coal industry PR campaigns and much else besides. Finally comes a topic I can cheerfully say I know nothing about (at first hand, at least): raising children.

Apologies for oversharing, but I had a vasectomy in 2004. The columnist Andrew Bolt spotted this, via an article in Britain’s Daily Mail which clearly stated that I was the one who had been under the knife. Bolt claimed that my wife had “sterilised herself”. (She does a lot of yoga, but she’s not that flexible. We have pointed this out but Bolt has kept at it, repeating the claim almost six years later).

Despite what the Daily Mail article says (and what is within the quotes was never said), our decision not to have kids wasn’t based on concern for what our hypothetical children would do to the planet, but rather what the planet would do to them. My wife copped some online abuse, and I was once disinvited to appear on the BBC after explaining my actual position.

I first switched on to climate change in about 1989, and have become convinced that the second half of the 21st century will probably make the first half of the 20th look like a golden age of peace and love. There have been 30 years of promises and pledges, protocols and agreements, while atmospheric greenhouse gas levels have climbed remorselessly due to humanity’s emissions. I suspect that the reported recent flatlining in emissions growth could well turn out to be as illusory as the so-called global warming “hiatus”.

Writing recently in the Sydney Morning Herald, climate scientist Sophie Lewis eloquently asked:

Should we have children? And if we do, how do we raise them in a world of change and inequity? Can I reconcile my care and concern for the future with such an active and deliberate pursuit of a child? Put simply, I can’t.

While I would never presume to tell anyone what to do with their genitals, I must confess my personal amazement that climate activists who do have children – and who I know have read the same scientific research as me and drawn the same conclusions – aren’t freaking out more. (Perhaps they are just very tired.)

As the Manic Street Preachers sagely warned, our children will have to tolerate whatever we do, and more besides.

Be prepared?

So how do we prepare tomorrow’s adults for the world bequeathed to them by the adults of yesterday and today? Even the mainstream media is beginning to ask this question.

Some studies say young people don’t care enough about climate change; others claim they do. The Australian picture seems to be mixed.

As the environmental writer Michael McCarthy has lamented:

A new edition of the Oxford Junior Dictionary was published in 2007 with a substantial group of words relating to nature – more than 50 – excised: they included acorn, adder, ash, beech, bluebell, buttercup, catkin, conker, cowslip and dandelion. Their replacements included terms from the digital world such as analogue, blog, broadband, bullet-point, celebrity, chatroom, cut-and-paste, MP3 player and voicemail.

Might we be more adaptive than we think? The social demographers Wolfgang Lutz and Raya Muttarak, in their snappily titled paper Forecasting societies’ adaptive capacities through a demographic metabolism model, think so, describing how “the changing educational composition of future populations” might help societies adapt to climate change.

But not everyone thinks our brains will get us out of the mess that they and our opposable thumbs have got us into. As an editor at the Daily Climate pointed out:

A substantial portion of the human population lives on coasts. Much of their protein comes from fish. What happens when ocean acidification turns all of that to slime?

So what should we tell kids about climate?

It always helps to be open to advice from different settings. For instance, I stumbled on this good advice on a blog aimed at military spouses, but it strikes me that it holds just as true for the climate-concerned:

It is okay to show sadness around your kids; in fact, it is probably healthy. However, it is not okay to dump your emotions on them. Save rants and deep conversations for trusted adults.
If you are feeling overwhelmed (and you will), don’t turn to your kids. Children are usually helpless to offer advice and it can cause them to experience anxiety. Seek help from an adult friend … extended family, a neighbor, your church, or a counselor.

Sophie Lewis sensibly hopes that the next generation(s) “can be more empathetic, more creative and more responsive than we have been”. It’s a noble hope, but it will only happen if we behave differently.

So as previously in this column, it’s over to you, the readers. I have a couple of questions for you:

First, how do those of you who are parents (and grandparents, aunts and uncles) talk to your children about the climate change impacts that will happen in their lifetimes? Avoidance? Sugar-coating? The “straight dope”? Do you slip books from the burgeoning fields of dystopian fiction and “cli-fi” into their Christmas stockings? Besides The Hunger Games, there is Tomorrow, When the War Began, the excellent Carbon Diaries and, more recently, James Bradley’s The Silent Invasion. Do you worry about scaring the kids? What do the youngsters themselves say?

Second, what steps are you taking to help young people develop the (practical and interpersonal) skills required to survive as times get tougher? What are those skills? How do we make sure that it isn’t just the few (children of the rich and/or the “switched on”) who gain these skills?

This article was written by:

Marc Hudson – [PhD Candidate, Sustainable Consumption Institute, University of Manchester]

 

 

 

 

 

This article is part of a syndicated news program via

 

The world’s tropical zone is expanding, and Australia should be worried

The-worlds-tropical-zone-is-expanding ‘Tropics’ may conjure images of sun-kissed
islands, but the expanding tropical zone could bring drought and cyclones 
further south. Pedro Fernandes/Flickr

The Tropics are defined as the area of Earth where the Sun is directly overhead at least once a year — the zone between the Tropics of Cancer and Capricorn.

However, tropical climates occur within a larger area about 30 degrees either side of the Equator. Earth’s dry subtropical zones lie adjacent to this broad region. It is here that we find the great warm deserts of the world.

Earth’s bulging waistline

Earth’s tropical atmosphere is growing in all directions, leading one commentator to cleverly call this Earth’s “bulging waistline”.

Since 1979, the planet’s waistline been expanding poleward by 56km to 111km per decade in both hemispheres. Future climate projections suggest this expansion is likely to continue, driven largely by human activities – most notably emissions of greenhouse gases and black carbon, as well as warming in the lower atmosphere and the oceans.

If the current rate continues, by 2100 the edge of the new dry subtropical zone would extend from roughly Sydney to Perth.

As these dry subtropical zones shift, droughts will worsen and overall less rain will fall in most warm temperate regions.

Poleward shifts in the average tracks of tropical and extratropical cyclones are already happening. This is likely to continue as the tropics expand further. As extratropical cyclones move, they shift rain away from temperate regions that historically rely upon winter rainfalls for their agriculture and water security.

Researchers have observed that, as climate zones change, animals and plants migrate to keep up. But as biodiversity and ecosystem services are threatened, species that can’t adjust to rapidly changing conditions face extinction.

In some biodiversity hotspots – such as the far southwest of Australia – there are no suitable land areas (only oceans) for ecosystems and species to move into to keep pace with warming and drying trends.

We are already witnessing an expansion of pests and diseases into regions that were previously climatically unsuitable. This suggests that they will attempt to follow any future poleward shifts in climate zones.

I recently drew attention to the anticipated impacts of an expanding tropics for Africa. So what might this might mean for Australia?

Australia is vulnerable

Australia’s geographical location makes it highly vulnerable to an expanding tropics. About 60% of the continent lies north of 30°S.

As the edge of the dry subtropical zone continues to creep south, more of southern Australia will be subject to its drying effects.

Meanwhile, the fringes of the north of the continent may experience rainfall and temperature conditions that are more typical of our northern neighbours.

The effects of the expanding tropics are already being felt in southern Australia in the form of declining winter rainfall. This is especially the case in the southwest and — to a lesser extent — the continental southeast.

Future climate change projections for Australia include increasing air and ocean temperatures, rising sea levels, more hot days (over 35℃), declining rainfall in the southern continental areas, and more extreme fire weather events.

For northern Australia, changes in annual rainfall remain uncertain. However, there is a high expectation of more extreme rainfall events, many more hot days and more severe (but less frequent) tropical cyclones and associated storm surges in coastal areas.

Dealing with climate change

Adaptation to climate change will be required across all of Australia. In the south the focus will have to be on adapting to projected drying trends. Other challenges include more frequent droughts, more warm spells and hot days, higher fire weather risk and rising sea levels in coastal areas.

The future growth of the north remains debatable. I have already pointed out the lack of consideration of climate change in the White Paper for the Development of Northern Australia.

The white paper neglects to explain how planned agricultural, mining, tourism and community development will adapt to projected changes in climate over coming decades — particularly, the anticipated very high number of hot days.

For example, Darwin currently averages 47 hot days a year, but under a high carbon emission scenario, the number of hot days could approach 320 per year by 2090. If the north is to survive and thrive as a significant economic region of Australia, it will need effective climate adaptation strategies. This must happen now — not at some distant time in the future.

This requires bipartisan support from all levels of government, and a pan-northern approach to climate adaptation. It will be important to work closely with industry and affected local and Indigenous communities across the north.

These sectors must have access to information and solutions drawn from interdisciplinary, “public good” research. In the face of this urgent need, CSIRO cuts to such research and the defunding of the National Climate Change Adaptation Research Facility should be ringing alarm bells.

As we enter uncharted climate territory, never before has public-good research been more important and relevant.

This article was written by:

Steve Turton – [Adjunct Professor of Environmental Geography, CQUniversity Australia]

 

 

 

 

 

This article is part of a syndicated news program via

 

A venomous paradox: how deadly are Australia’s snakes?

How-deadly-are-Australias-snakes A pair of rare sea snakes, thought 
to be extinct, sighted off Western Australia’s mid-north coast in 2015. 
Our stunning range of vipers inspire fear, but is that fair? 
AAP Image/WA Parks and Wildlife/Grant Griffin
Australia is renowned worldwide for our venomous and poisonous creatures, from snakes, spiders and ticks on land, to lethal jellyfish, stingrays and stonefish in our waters. Even the shy platypus can inflict excruciating pain if handled without due care.

Yet while injuries and deaths caused by venomous snakes and jellyfish are often sensationalised in the media, and feared by international visitors, a recent review found that very few “deadly” Australian animals actually cause deaths. Between 2000 and 2013, there were two fatalities per year from snake bites across Australia, while the average for bee stings was 2.2 and for jellyfish 0.25, or one death every four years. For spiders – including our notorious redbacks and Sydney funnel-webs – the average was zero.

Snakes nevertheless strike fear into many people who live in or visit Australia. When we have a higher risk of injury or death from burns, horses, bee stings, drownings and car accidents, why don’t we fear these hazards as we do the sight of a snake?

Snakes and statistics through history

Drawing of a snake
James Bray, Venomous and Non-Venomous Reptiles (1897). State Library of NSW/Peter Hobbins

When settlers arrived in Australia in the late 18th century, they believed that Australian snakes were harmless. By 1805 it was accepted that local serpents might kill humans, but they were hardly feared in the same way as the American rattlesnake or Indian cobra.

Until the 1820s, less than one human death from snake bite was recorded each year; in 1827 visiting surgeon Peter Cunningham remarked that:

…comparatively few deaths [have] taken place from this cause since the foundation of the colony.

Similar observations were made into the 1840s. What the colonists did note, however, was the significant death toll among their “exotic” imported animals, from cats and sheep to highly valuable horses and oxen.

By the 1850s, living experiments in domestic creatures – especially chickens and dogs – were standard fare for travelling antidote sellers. Given the popularity of these public snake bite demonstrations, from the 1860s, doctors and naturalists also took to experimenting with captive animals. It was during this period that official statistics on deaths began to be collated across the Australian colonies.

One sample from 1864–74, for instance, reported an average of four snake bite deaths per year across Victoria, or one death per 175,000 colonists. In contrast, during the same period one in 6,000 Indians died from snake bites each year; little wonder that around the world, Australian snakes were considered trifling.

The 1890s represented a dramatic period of divergence, though. On one hand, statistical studies in 1882–92 suggested that on average, 11 people died annually from snake bite across Australia. Similar data compiled in Victoria led physician James Barrett to declare in 1892 that snakes posed “one of the most insignificant causes of death in our midst”. On the other hand, by 1895 standardised laboratory studies, aimed especially at producing an effective antivenom, saw a global recognition that Australian snake venoms were among the most potent in the world.

Image of a snake being milked
Raymond Hoser milks a Coastal Taipan for its venom in Melbourne. The Coastal Taipan is considered the second deadliest snake in the world; its bite has enough venom to kill 50 adult humans. Reuters/Mick Tsikas

In Sydney, physiologist Charles Martin claimed that Australian tiger snake venom was as powerful as that of the cobra. In 1902, his collaborator Frank Tidswell ranked local tiger snake, brown snake and death adder venoms at the top of the global toxicity table.

Over the ensuing century, this paradox has remained: why do so few Australians die from snake bites when our serpents have the world’s most potent venoms? Why aren’t they more deadly?

Deadly fear

Scientific research has delivered ever-expanding knowledge about venoms, what they do, how they work, how they affect us clinically, and their comparative “potency” based on animal studies. In response we have introduced first aid measures, guidelines, effective clinical management and treatment, which in Australia forms one of the world’s best emergency health care systems.

In contrast, countries where snakebites cause far more deaths generally face challenges in accessing affordable essential medicines, prevention and education options.

Image of the the long-glanded blue coral snake
Australian scientists researching the long-glanded blue coral snake have found it could provide clues to improving pain management in humans. AAP Image/University of Queensland, Tom Charlton

Snakes form an essential part of their ecosystems. They do not “attack” humans, mostly being shy animals, but are defensive and prefer to escape.

It would seem that venom potency is not a good measure of deadliness, and it may be a combination of our history, behaviour and belief that creates a cultural fear.

Without understating the potential danger posed by venomous snakes, what we offer instead is reassurance. As nearly two centuries of statistics and clinical experience suggest, most snake bites in Australia are survivable, if managed quickly, calmly and effectively. In fact, encounters with humans all too often prove deadly to the snakes themselves – a paradox that is within our power to change.

This article was co-authored by:
Image of Ronelle Wilson
Ronelle Wilson – [Scientist, University of Melbourne] and
 
Image of Peter Hobbons
Peter Hobbons – [ARC DECRA Fellow, University of Sydney]

 

 

 

 

This article is part of a syndicated news program via the Conversation
 

Land clearing on the rise as legal ‘thinning’ proves far from clear-cut

Land ClearingA ‘thinned’ landscape, which provides far 
from ideal habitat for many species.

Land clearing is accelerating across eastern Australia, despite our new research providing a clear warning of its impacts on the Great Barrier Reef, regional and global climate, and threatened native wildlife.

Policies in place to control land clearing have been wound back across all Australian states, with major consequences for our natural environment.

One of the recent policy changes made in Queensland and New South Wales has been the introduction of self-assessable codes that allow landholders to clear native vegetation without a permit. These codes are meant to allow small amounts of “low-risk” clearing, so that landholders save time and money and government can focus on regulating activities that have bigger potential impacts on the environment.

However, substantial areas of native forest are set to be cleared in Queensland under the guise of vegetation “thinning”, which is allowed by these self-assessable codes. How did this happen?

Thin on the ground

Thinning involves the selective removal of native trees and shrubs, and is widely used in the grazing industry to improve pasture quality. It has been argued that thinning returns the environment back to its “natural state” and provides better habitat for native wildlife. However, the science supporting this practice is not as clear-cut as it seems.

Vegetation “thickening” is part of a natural, dynamic ecological cycle. Australia’s climate is highly variable, so vegetation tends to grow more in wetter years and then dies off during drought years. These natural cycles of thickening and thinning can span 50 years or more. In most areas of inland eastern Australia, there is little evidence for ongoing vegetation thickening since pastoral settlement.

Thinning of vegetation using tractors, blades and other machinery interrupts this natural cycle, which can make post-drought recovery of native vegetation more difficult. Loss of tree and shrub cover puts native wildlife at much greater risk from introduced predators like cats, and aggressive, “despotic” native birds. Thinning reduces the diversity of wildlife by favouring a few highly dominant species that prefer open vegetation, and reduces the availability of old trees with hollows.

Many native birds and animals can only survive in vegetation that hasn’t been cleared for at least 30 years. So although vegetation of course grows back after clearing, for native wildlife it’s a matter of quality, not just quantity.

Land clearing by stealth?

Thinning codes in Queensland and New South Wales allow landholders to clear vegetation that has thickened beyond its “natural state”. Yet there is little agreement on what the “natural state” is for many native vegetation communities.

Under the Queensland codes, up to 75% of vegetation in an area can be removed without a permit, and in New South Wales thinning can reduce tree density to a level that is too low to support natural ecosystems.

All of this thinning adds up. Since August 2016, the Queensland government has received self-assessable vegetation clearing code notifications totalling more than 260,000 hectares. These areas include habitat for threatened species, and ecosystems that have already been extensively cleared.

Map of tree clearing in Queensland

 

Locations of tree felling

It may be that the actual amount of vegetation cleared under thinning codes is less than the notifications suggest. But we will only know for sure when the next report on land clearing is released, and by then it will be too late.

Getting the balance right

Vegetation policy needs to strike a balance between protecting the environment and enabling landholders to manage their businesses efficiently and sustainably. While self-regulation makes sense for some small-scale activities, the current thinning codes allow large areas of vegetation to be removed from high-risk areas without government oversight.

Thinning codes should only allow vegetation to be cleared in areas that are not mapped as habitat for threatened species or ecosystems, and not to an extent where only scattered trees are left standing in a landscape. Stronger regulation is still needed to reduce the rate of land clearing, which in Queensland is now the highest in a decade.

Protecting native vegetation on private land reduces soil erosion and soil salinity, improves water quality, regulates climate, and allows Australia’s unique plants and animals to survive. Landholders who preserve native vegetation alongside farming provide essential services to the Australian community, and should be rewarded. We need long-term incentives to allow landholders to profit from protecting vegetation instead of clearing it.

Our research has shown that Australian governments spend billions of dollars trying to achieve the benefits already provided by native vegetation, through programs such as the Emissions Reduction Fund, the 20 Million Trees program and Reef Rescue. Yet far more damage is inflicted by under-regulated clearing than is “fixed” by these programs.

Imagine what could be achieved if we spent that money more effectively.

This article was co-authored by:
Image of April Reside 
April Reside – [Researcher, Centre for Biodiversity and Conservation Science, The University of Queensland];
 
Image of Anita J CosgroveAnita J Cosgrove
Research Assistant in the Centre for Biodiversity and Conservation Science, The University of Queensland
 
Image of Jennifer Lesley SilcockJennifer Lesley Silcock
Post-doctoral research fellow, The University of Queensland

 

Image of Leonie SeabrookLeonie Seabrook
Landscape Ecologist, The University of Queensland

 

Image of Megan C EvansMegan C Evans
Postdoctoral Research Fellow, Environmental Policy, The University of Queensland

 

 

 

 

 

This article is part of a syndicated news program via the Conversation